Electric propulsion technologies and computer simulations 1st "SIMPOSIO **Futuro**INAREA", May 18-20, 2022, Bari, Italy

F. Cichocki, F. Taccogna, P. Minelli

Institute for Plasma Science and Technology (CNR-ISTP), Bari, Italy

Onboard spacecraft propulsion

- Onboard propulsion is what produces a net thrust force on a spacecraft, thus enabling in-space maneuvers and trajectory control
- Thrust generation principle:
 - \circ Thermal propulsion \rightarrow gas pressure acting on thruster walls
 - \circ Electric propulsion \rightarrow electric/magnetic forces on a plasma
 - \circ Propellantless \rightarrow other force types
- Input power to the thruster/propellant can be electric, chemical/nuclear, or electromagnetic

Electric propulsion

- Electric propulsion is a technology, firstly demonstrated in 1960s, that enables large propellant mass savings compared to the traditional chemical propulsion
 - Accelerated propellant is mainly a **plasma** (i.e. an ionized gas with positive ions and free electrons) → need to first ionize the propellant
 - lons can be accelerated to unlimited exhaust velocities (by applying an appropriate voltage drop)→ specific impulses 10 times as large as those of chemical thrusters are easily achievable: 10s of km/s VS a few km/s
- Limitation is rather on the available onboard electric power → thrust forces much smaller than those of chemical thrusters: 0.1 mN → 100 mN

• In propellant-based propulsion, an essential figure of merit is the required propellant mass for a given mission:

PROPELLANT MASS $\int_{m_{\text{prop}}} \int_{m_{0}} \int$

THRUST FORCE
$$\longrightarrow T = (2 \eta_T P) / I_{sp} [m/s]$$

THRUSTER EFFICIENCY ($\simeq 50\%$) INPUT POWER

○ Electrostatic thrusters → Coulomb force on non-neutral plasma
 ○ Electromagnetic thrusters → Lorentz force on plasma electric current

lon thrusters and Hall thrusters

• The electric thrusters with the highest flight heritage are the **ion thruster** and the **Hall thruster**

propellant iniection

- Ion thrusters are electrostatic thrusters
 - Thrust force generated by direct acceleration of ions through a system of grids (with holes) at different electric potentials
 - Plasma inside discharge chamber
 created by different means:
 - Capacitive discharge (gridded ion thruster)
 - Inductive discharge (radiofrequency ion thruster)
 - Need of an external neutralizer to

RIDDED ION THRUSTER

- Hall thrusters (HTs) are electromagnetic
 thrusters
 - Radial magnetic field applied at annular channel exit → electrons from the cathode are forced to move in the azimuthal direction due to the ExB drift and ionize efficiently the propellant
 - lons are accelerated downstream by the applied potential (anode-cathode) and form a quasineutral plume
 - Thrust due to interaction of azimuthal currents and applied B field

 \circ $I_{sp} \simeq 10-30$ km/s, high thrust density

WORKING SCHEME OF A HALL THRUSTER

propellant injection opellant ection anode injection anode injection anode injection dielectric walls injection injection dielectric walls injection i

TOGRAPH OF AN OPERATING HALL THRUS<mark>ter i</mark>n a Vacuum Chamber (From [2])

Other electric propulsion concepts

- Field Emission Electric Propulsion (FEEP) →
 electrostatic acceleration of ions from liquid metals
- Pulsed Plasma thrusters (PPT) → Electromagnetic
 (Lorentz force) acceleration of a plasma created through a capacitive discharge between capacitor plates
- Electromagnetic thrusters with a **magnetic nozzle** (MN):
 - Electron Cyclotron Resonance (ECR) thrusters
 - Helicon thrusters
 - **VASIMR** thruster (ion resonance heating)

PHOTOGRAPH OF AN OPERATING HELICON (HRUSTER IN A VACUUM CHAMBER (FROM [3])

current

avoid beam stalling

 $\circ~I_{
m sp}$ up to 100 km/s, low thrust density

Importance of simulations and available models

90000000000

- Testing electric thrusters require very costly experiments inside high-vacuum chambers (<10⁻⁵ mbar) → simulations are a key element to understand the underlying physics and advance in the design quickly, without having to build expensive protoypes
- Main numerical models for simulations:
 - Multi-fluid models → solution of conservation equations for various fluids (ions, neutrals, electrons)
 - Electrostatic Particle-In-Cell (PIC) models → particle
 representation of all species, with a mesh-based Poisson's solver
 - Direct solution of **Boltzmann/Vlasov equations** \rightarrow particle distribution functions f_s in multi-dimensional phase spaces
 - Hybrid models: fluid electrons, PIC for ions/neutrals

Active research lines at ISTP

- The ISTP-Bari research group is active in the following research lines:
 - **Air-breathing Hall thrusters** (PON "CLOSE to the Earth" No. ARS ARSO1– 00141): 2D PIC model accounting for complex propellant chemistry and wallinteraction (associative recombination, secondary electron emission, etc...)
 - Hall thruster anomalous transport fundamental study: 3D PIC model applied to a HT to study azimuthal fluctuations in plasma properties, which are thought to be at the origin of the enhanced axial electron mobility inside the channel
 - **Plumes from Hall thruster clusters**: hybrid 3D models
 - **Plasma plume interaction with spacecraft**: hybrid 2D/3D PIC models
 - Microwave **micro-thruster manufacturing and simulation** (RIPARTI, Puglia)
 - **ExB device benchmark simulations**: Penning device

Simulation Results

2D HALL THRUSTER MODELING

• Assessment of the thruster performance using alternative propellants like O_2 , N_2 and an N_2/Ω mixture \rightarrow feasibility of air-breathing propulsion

3D HALL THRUSTER MODELING

 Anomalous axial transport of electrons in HTs is thought to be provoked by azimuthal plasma properties fluctuations in time and space

HT PLUMES MODELING

 HT plasma plume expansion and divergence due to charge-exchange ion-neutral collisions

REFERENCES

[1] F. Cichocki et al, *Electric Propulsion Subsystem Optimization for "Ion Beam Shepherd" Missions*, Journal of Propulsion and Power, 33(2), 370-378.
[2] Photograph by Charly W. Karl license at: <u>https://creativecommons.org/licenses/by-nd/2.0/</u>
[3] F. Cichocki et al. *Magnetic Nozzle and RPA Simulations vs. Experiments for a Helicon Plasma Thruster Plume*, Frontiers in Physics, Vol. 10, 2022

[4] F. Taccogna, F. Cichocki, P. Minelli, *PIC model of an air-breathing low power Hall thruster*, 8thSpace Propulsion Conference, N. 324, Estoril, Portugal, May 9-13, 2022
[5] F. Taccogna, L. Garrigues, *Latest progress in Hall thrusters plasma modelling*. Reviews of Modern Plasma Physics, 3(1), 1-63, 2019
[6] F. Taccogna, P. Minelli, *Three-dimensional particle-in-cell model of Hall thruster: The discharge channel*, Physics of Plasmas, 25(6), 061208, 2018.
[7] F. Taccogna et al, *Three-dimensional plume simulation of multi-channel thruster configuration*, Plasma Sources Science and Technology 23 (6), 065034, 2014

ACKNOWLEDGMENTS

Work funded by the Italian ministry of university and research (MUR) under the project PON "CLOSE to the Earth" No. ARS ARSO1–00141.

CONTACT

filippo.cichocki@istp.cnr.it francesco.taccogna@cnr.it pierpaolo.minelli@cnr.it web: <u>https://www.istp.cnr.it/</u>