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Onboard spacecraft propulsion

● Onboard propulsion is what produces a net thrust force on a 

spacecraft, thus enabling in-space maneuvers and trajectory control

● Thrust generation principle:

o Thermal propulsion gas pressure acting on thruster walls

o Electric propulsion electric/magnetic forces on a plasma

o Propellantless  other force types

● Input power to the thruster/propellant can be electric, 

chemical/nuclear, or electromagnetic

● In propellant-based propulsion, an essential figure of merit is the

required propellant mass for a given mission: 
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Simulation Results

● Electric propulsion is a technology, firstly demonstrated in 1960s, that enables

large propellant mass savings compared to the traditional chemical propulsion

o Accelerated propellant is mainly a plasma (i.e. an ionized gas with positive 

ions and free electrons)  need to first ionize the propellant

o Ions can be accelerated to unlimited exhaust velocities (by applying an

appropriate voltage drop) specific impulses 10 times as large as those of 

chemical thrusters are easily achievable: 10s of km/s VS a few km/s

o Limitation is rather on the available onboard electric power thrust forces

much smaller than those of chemical thrusters: 0.1 mN 100 mN

o Electrostatic thrusters Coulomb force on non-neutral plasma

o Electromagnetic thrusters Lorentz force on plasma electric current

𝑇 = 2 𝜂𝑇 𝑃 /𝐼𝑠𝑝 m/s

THRUSTER EFFICIENCY (≃ 50%) INPUT POWER

● The electric thrusters with the highest flight heritage are the ion thruster and the Hall thruster

𝑚prop = 𝑚0 1 − exp −Δ𝑉/𝐼𝑠𝑝[m/s]

THRUST FORCE
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● The ISTP-Bari research group is active in the following research lines:

o Air-breathing Hall thrusters (PON “CLOSE to the Earth” No. ARS ARS01–

00141): 2D PIC model accounting for complex propellant chemistry and wall-

interaction (associative recombination, secondary electron emission, etc…)

o Hall thruster anomalous transport fundamental study: 3D PIC model 

applied to a HT to study azimuthal fluctuations in plasma properties, which are 

thought to be at the origin of the enhanced axial electron mobility inside the 

channel

o Plumes from Hall thruster clusters: hybrid 3D models

o Plasma plume interaction with spacecraft: hybrid 2D/3D PIC models

o Microwave micro-thruster manufacturing and simulation (RIPARTI, Puglia)

o ExB device benchmark simulations: Penning device
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RADIO-FREQUENCY ION THRUSTER (FROM [1])

● Ion thrusters are electrostatic thrusters

o Thrust force generated by direct

acceleration of ions through a 

system of grids (with holes) at 

different electric potentials

o Plasma inside discharge chamber

created by different means:

 Capacitive discharge (gridded ion 

thruster)

 Inductive discharge (radio-

frequency ion thruster)

o Need of an external neutralizer to 

avoid beam stalling

o 𝐼sp up to 100 km/s, low thrust density

GRIDDED ION THRUSTER
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● Hall thrusters (HTs) are electromagnetic

thrusters

o Radial magnetic field applied at annular

channel exit electrons from the

cathode are forced to move in the

azimuthal direction due to the ExB drift

and ionize efficiently the propellant

o Ions are accelerated downstream by

the applied potential (anode-cathode) 

and form a quasineutral plume

o Thrust due to interaction of azimuthal

currents and applied B field

o 𝐼𝑠𝑝 ≃ 10-30 km/s, high thrust density

PHOTOGRAPH OF AN OPERATING HALL THRUSTER IN A 

VACUUM CHAMBER (FROM [2]) 

PHOTOGRAPH OF AN OPERATING HELICON 

THRUSTER IN A VACUUM CHAMBER (FROM [3])
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WORKING SCHEME OF A HALL THRUSTER

● Field Emission Electric Propulsion (FEEP) 

electrostatic acceleration of ions from liquid metals

● Pulsed Plasma thrusters (PPT)  Electromagnetic

(Lorentz force) acceleration of a plasma created through a 

capacitive discharge between capacitor plates

● Electromagnetic thrusters with a magnetic nozzle (MN):

o Electron Cyclotron Resonance (ECR) thrusters

o Helicon thrusters

o VASIMR thruster (ion resonance heating)

WORKING SCHEME OF A MAGNETIC NOZZLE
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● Testing electric thrusters require very costly experiments inside high-

vacuum chambers (<10-5 mbar)  simulations are a key element to 

understand the underlying physics and advance in the design quickly, 
without having to build expensive protoypes

● Main numerical models for simulations:

o Multi-fluid models solution of conservation equations for

various fluids (ions, neutrals, electrons)

o Electrostatic Particle-In-Cell (PIC) models particle 

representation of all species, with a mesh-based Poisson’s solver

o Direct solution of Boltzmann/Vlasov equations particle

distribution functions 𝑓𝑠 in multi-dimensional phase spaces

o Hybrid models: fluid electrons, PIC for ions/neutrals

PARTICLE PUSH

CHARGE DEPOSITION TO MESH NODES

POISSON’S SOLVER

𝛻 ⋅ 𝜖𝑟𝛻𝜙 = −
𝜌𝑐
𝜖0

FIELDS at 

PARTICLES 

POSITIONS

𝑚𝑖
d

d𝑡
𝒗𝑖 = 𝑞𝑖𝑬𝑖 + 𝑞𝑖𝒗𝑖 × 𝑩𝑖

𝜌𝑐 =
1

Δ𝑉
 

𝑝=1

𝑁

𝑊𝑝𝑞𝑝 1 − 𝜂𝑝
′ 1 − 𝜁𝑝

′

𝒗𝑖
𝒓𝑖
𝑓𝑠(𝒗, 𝒓)

𝜌𝑐(𝒓)𝜙 𝒓
𝑬 𝒓

𝑬(𝒓𝑖)
𝑩(𝒓𝑖)

BASIC PARTICLE-IN-CELL SIMULATION LOOP

2D HALL THRUSTER MODELING

● Assessment of the thruster performance using alternative propellants like O2, 

N2 and an N2/O mixture feasibility of air-breathing propulsion

ELECTRIC POTENTIAL MAP IN A 2D HET PIC 

SIMULATION

PLASMA DENSITY [m-3] ALONG 

CHANNEL CENTERLINE FOR VARIOUS 

PROPELLANTS (FROM [4])

3D HALL THRUSTER MODELING

● Anomalous axial transport of electrons in HTs is thought to be provoked by azimuthal

plasma properties fluctuations in time and space

● 3D PIC simulations of a HT seem to confirm the

formation of such azimuthal structures

3D PLASMA DENSITY CONTOURS 

IN HT CHANNEL (FROM [6])
3D POTENTIAL CONTOURS IN 

HT CHANNEL (FROM [6])

AZIMUTHAL PLASMA POTENTIAL 

FLUCTUATIONS (FROM [6])

HT PLUMES MODELING

● HT plasma plume expansion and divergence 

due to charge-exchange ion-neutral collisions

● Plasma-spacecraft interaction 

● Cluster plumes interference and self-

organized electrostatic structures

PLASMA POTENTIAL IN A HT PLUME (FROM [7])
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