Unboard spacecratt propulsion

e [Inboard propulsion is what produces a net thrust force on a
spacecratt, thus enabling in-space maneuvers and trajectory control
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e tlectric propulsion is a technology, firstly demonstrated in 1360s, that enables
large propellant mass savings compared to the traditional chemical propulsion

Forces due to interaction with
an external medium

GRIDDED ION THRUSTER

created by different means:
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e [he electric thrusters with the highest flight heritage are the ion thruster and the Hall thruster

lon thrusters and Hall thrusters
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o Electromagnetic thrusters = Lorentz force on plasma electric current

Uther electric propulsion concepts

WORKING SCHEME OF A HALL THRUSTER
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lons are accelerated downstream by VACUIUM CHAMBER (FROM [2)) o VASIMR thruster (ion resonance heating)

the applied potential (anode-cathode)
and form a quasineutral plume

Thrust due to interaction of azimuthal
currents and applied B field

o Igp = 10-30km/s, high thrust density

PHOTOGRAPH OF AN OPERATING HELICON WORKING SCHEME OF A MAGNETIC NOZZLE
THRUSTER IN A VACUUM CHAMBER (FROM [3])
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BASIC PARTICLE-IN-CELL SIMULATION LOOP e [he ISTP-Bari research group is active in the following research lines:

o Air-breathing Hall thrusters (PON “CLOSE to the Earth” No. ARS ARSOI-

Vi 00141): 2D PIC model accounting for complex propellant chemistry and wall-

20 HALL THRUSTER MODELING

e Assessment of the thruster performance using alternative propellants like O,
N, and an N,/ mixture—> teasibility of air-breathing propulsion

ELECTRIC POTENTIAL MAP IN A 2D HET PIC PLASMA DENSITY [m] ALONG
SIMULATION CHANNEL CENTERLINE FOR VARIDUS
PROPELLANTS (FROM [4])
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o Hall thruster anomalous transport fundamental study: 30 PIC model

CHARGE DEPOSITION TO MESH NODES applied to a HT to study azimuthal fluctuations in plasma properties, which are
N
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thought to be at the origin of the enhanced axial electron mability inside the
channel

e [esting electric thrusters require very costly experiments inside high-
vacuum chambers (<I0-* mbar) = simulations are a key element to
. . . o E(r;) PARTICLE PUSH
understand the underlying physics and advance in the design quickly, ~— B@) q
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e Main numerical models for simulations:
o Multi-fluid models = solution of conservation equations for FIELDS at
various fluids (ions, neutrals, electrons) PARTICLES
: : : POSITIONS
o Electrostatic Particle-In-Cell (PIC) models = particle
representation of all species, with a mesh-based Poisson's solver
® [].ireclt sqlutiun uf_BuItzm_ann/ V!as_uv eq.uatinns -> particle ROISSON'S SOLVER
distribution functions £; in multi-dimensional phase spaces 50 7 (V) = _5_;
o Hybrid models: fluid electrons, PIC for ions/neutrals E(r)

Plumes from Hall thruster clusters: hybrid 30 models
Plasma plume interaction with spacecraft; hybrid 20/3D PIC models

Microwave micro-thruster manufacturing and simulation (RIPARTI, Puglia)
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ExB device benchmark simulations: Penning device

Simulation Results

30 HALL THRUSTER MODELING HT PLUMES MODELING
e Anomalous axial transport of electrons in HTs is thought to be provoked by azimuthal e HT plasma plume expansion and divergence
plasma properties fluctuations in time and space due to charge-exchange ion-neutral collisions
e 3D PIC simulations of a HT seem to confirm the e Plasma-spacecraft interaction
formation of such azimuthal structures il -
trie FLUCTUATIONS (FROM [B]) e C[luster plumes interference and self-
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